Chapter 1 – Introduction to Computers and C++ Programming

Outline

1.1 Introduction
1.2 What Is a Computer?
1.3 Computer Organization
1.4 Evolution of Operating Systems
1.5 Personal Computing, Distributed Computing and Client/Server Computing
1.6 Machine Languages, Assembly Languages and High-level Languages
1.7 The History of C
1.8 The C Standard Library
1.9 The Key Software Trend: Object Technology
1.10 C++ and C++ How to Program
1.11 Java and Java How to Program
1.12 Other High-level Languages
1.13 Structured Programming
1.14 The Basics of a typical C Program Development Environment
Chapter 1 – Introduction to Computers
and C++ Programming

Outline
1.15 Hardware Trends
1.16 History of the Internet
1.17 History of the World Wide Web
1.18 General Notes About C and this Book
Objectives

• In this chapter, you will learn:
 – To understand basic computer concepts.
 – To become familiar with different types of programming languages.
 – To become familiar with the history of the C programming language.
 – To become aware of the C standard library.
 – To understand the elements of a typical C program development environment.
 – To appreciate why it is important to learn C in a first programming course.
 – To appreciate why C provides a foundation for further study of programming languages in general.
1.1 Introduction

• We will learn
 – The C programming language
 – Structured programming and proper programming techniques

• This course is appropriate for
 – Technically oriented people with little or no programming experience
 – Experienced programmers who want a deep and rigorous treatment of the language
1.2 What is a Computer?

• Computer
 – Device capable of performing computations and making logical decisions
 – Computers process data under the control of sets of instructions called computer programs

• Hardware
 – Various devices comprising a computer
 – Keyboard, screen, mouse, disks, memory, CD-ROM, and processing units

• Software
 – Programs that run on a computer
1.3 Computer Organization

- Six logical units in every computer:
 1. Input unit
 - Obtains information from input devices (keyboard, mouse)
 2. Output unit
 - Outputs information (to screen, to printer, to control other devices)
 3. Memory unit
 - Rapid access, low capacity, stores input information
 4. Arithmetic and logic unit (ALU)
 - Performs arithmetic calculations and logic decisions
 5. Central processing unit (CPU)
 - Supervises and coordinates the other sections of the computer
 6. Secondary storage unit
 - Cheap, long-term, high-capacity storage
 - Stores inactive programs

1.4 Evolution of Operating Systems

- Batch processing
 - Do only one job or task at a time
- Operating systems
 - Manage transitions between jobs
 - Increased throughput
 - Amount of work computers process
- Multiprogramming
 - Computer resources are shared by many jobs or tasks
- Timesharing
 - Computer runs a small portion of one user’s job then moves on to service the next user
1.5 Personal Computing, Distributed Computing, and Client/Server Computing

• Personal computers
 – Economical enough for individual

• Distributed computing
 – Computing distributed over networks

• Client/server computing
 – Sharing of information across computer networks between file servers and clients (personal computers)
1.6 Machine Languages, Assembly Languages, and High-level Languages

Three types of programming languages

1. Machine languages
 - Strings of numbers giving machine specific instructions
 - Example:
 \[+1300042774 \]
 \[+1400593419 \]
 \[+1200274027 \]

2. Assembly languages
 - English-like abbreviations representing elementary computer operations (translated via assemblers)
 - Example:
 \[\text{LOAD} \quad \text{BASEPAY} \]
 \[\text{ADD} \quad \text{OVERPAY} \]
 \[\text{STORE} \quad \text{GROSSPAY} \]
1.6 Machine Languages, Assembly Languages, and High-level Languages

Three types of programming languages (continued)

3. High-level languages
 - Codes similar to everyday English
 - Use mathematical notations (translated via compilers)
 - Example:
 \[\text{grossPay} = \text{basePay} + \text{overTimePay} \]
1.7 History of C

• C
 – Evolved by Ritchie from two previous programming languages, BCPL and B
 – Used to develop UNIX
 – Used to write modern operating systems
 – Hardware independent (portable)
 – By late 1970's C had evolved to "Traditional C"

• Standardization
 – Many slight variations of C existed, and were incompatible
 – Committee formed to create a "unambiguous, machine-independent" definition
 – Standard created in 1989, updated in 1999
1.8 The C Standard Library

• C programs consist of pieces/modules called functions
 – A programmer can create his own functions
 • Advantage: the programmer knows exactly how it works
 • Disadvantage: time consuming
 – Programmers will often use the C library functions
 • Use these as building blocks
 – Avoid re-inventing the wheel
 • If a premade function exists, generally best to use it rather than write your own
 • Library functions carefully written, efficient, and portable
1.9 The Key Software Trend: Object Technology

• Objects
 – Reusable software components that model items in the real world
 – Meaningful software units
 • Date objects, time objects, paycheck objects, invoice objects, audio objects, video objects, file objects, record objects, etc.
 • Any noun can be represented as an object
 – Very reusable
 – More understandable, better organized, and easier to maintain than procedural programming
 – Favor modularity
1.12 Other High-level Languages

• Other high-level languages
 – FORTRAN
 • Used for scientific and engineering applications
 – COBOL
 • Used to manipulate large amounts of data
 – Pascal
 • Intended for academic use
1.13 Structured Programming

• Structured programming
 – Disciplined approach to writing programs
 – Clear, easy to test and debug and easy to modify

• Multitasking
 – Specifying that many activities run in parallel
1.14 Basics of a Typical C Program Development Environment

- Phases of C++ Programs:

1. **Edit**
 - Program is created in the editor and stored on disk.

2. **Preprocess**
 - Preprocessor program processes the code.

3. **Compile**
 - Compiler creates object code and stores it on disk.

4. **Link**
 - Linker links the object code with the libraries.

5. **Load**
 - Loader puts program in memory.

6. **Execute**
 - CPU takes each instruction and executes it, possibly storing new data values as the program executes.
1.15 Hardware Trends

• Every year or two the following approximately double:
 – Amount of memory in which to execute programs
 – Amount of secondary storage (such as disk storage)
 • Used to hold programs and data over the longer term
 – Processor speeds
 • The speeds at which computers execute their programs
1.16 History of the Internet

• The Internet enables
 – Quick and easy communication via e-mail
 – International networking of computers

• Packet switching
 – The transfer of digital data via small packets
 – Allows multiple users to send and receive data simultaneously

• No centralized control
 – If one part of the Internet fails, other parts can still operate

• TCP/IP

• Bandwidth
 – Information carrying capacity of communications lines
1.17 History of the World Wide Web

- **World Wide Web**
 - Locate and view multimedia-based documents on almost any subject
 - Makes information instantly and conveniently accessible worldwide
 - Possible for individuals and small businesses to get worldwide exposure
 - Changing the way business is done
1.18 General Notes About C and This Book

- **Program clarity**
 - Programs that are convoluted are difficult to read, understand, and modify

- **C is a portable language**
 - Programs can run on many different computers
 - However, portability is an elusive goal

- **We will do a careful walkthrough of C**
 - Some details and subtleties are not covered
 - If you need additional technical details
 - Read the C standard document
 - Read the book by Kernigan and Ritchie