
Adnan Shahzada

• A man owns a wolf, a goat
and a cabbage

• He has to cross a river in a
boat, but he can only take
one item at a time

Ad
na

n
Sh

ah
za

da

• If left alone, the wolf will
eat the goat or the goat will
eat the cabbage

• How can he cross the river
without anything being
eaten?

2

Ad
na

n
Sh

ah
za

da

• Many problems can be solved by searching for a
good solution in a search space

Ad
na

n
Sh

ah
za

da

• Examples of such problems are
• 8 puzzle problem
• Maze
• TSP

3

Ad
na

n
Sh

ah
za

da

• A convenient way of representing search spaces
is as a graph

Ad
na

n
Sh

ah
za

da

• A graph consists of nodes and links
• nodes represent states in a problem solving

process
• links represent transitions or relationships

between nodes 4

Ad
na

n
Sh

ah
za

da

• A special case of a graph is a rooted tree
• A rooted tree has:

• a unique node (the root) from which it is possible to
reach all other nodes in the graph

Ad
na

n
Sh

ah
za

da

reach all other nodes in the graph
• at most one link between any two nodes
• no cycles

• Trees are common in search problems

5

Ad
na

n
Sh

ah
za

da

3

4 5

7

Ad
na

n
Sh

ah
za

da

4 5

6
4

2

5

5
6

9

6

Ad
na

n
Sh

ah
za

da

Ad
na

n
Sh

ah
za

da

X
X X

.............................

7

Ad
na

n
Sh

ah
za

da

Ad
na

n
Sh

ah
za

da

1

2

3 4

5 6

78

Ad
na

n
Sh

ah
za

da

8
1

2

3 4

5 6

7

8

1

2

3 4

5

6

78

15 6

1

2

3 4

5 6

78

• Typically when representing a problem with a
graph, we have:
• A start state (where we are at the start, for example

Ad
na

n
Sh

ah
za

daA start state (where we are at the start, for example
the starting position of a game of chess)

• Intermediatry states (where we are now, for example the current
postion of the board of chess)

• one or more goal states where the search for a
solution terminates (for example a check-mate
position in chess)

9

Ad
na

n
Sh

ah
za

da

• Defining the ”start state” can be done in two main ways

• Forward Chaining
• start from what you know….

Ad
na

n
Sh

ah
za

da

• start from what you know….
• ….work towards a solution

• Backward Chaining
• start from the optimum solution….
• ….work out what inputs yield this solution

10

Ad
na

n
Sh

ah
za

da

• We want systematic methods for searching graphs which
yield optimum solutions with as little computational
effort as possible

Ad
na

n
Sh

ah
za

da

• Two basic approaches:
• depth first search
• breadth-first search

11

Ad
na

n
Sh

ah
za

da

• A list of closed nodes
• nodes which have been evaluated and their children

placed on the open list
• A list of open nodes

• nodes which have not been evaluated yet
• the first item on this list is evaluated next

Ad
na

n
Sh

ah
za

da

• the first item on this list is evaluated next
• Note that nodes are usually stored as tuples,

with their parent node attached. This enables
the path to a solution (when we find it) to be
reconstructed.

• Before placing a node on the open list, we need
to check that it is not already on the closed list 12

Ad
na

n
Sh

ah
za

da

• When we evaluate a state and derive its children,
we put these children at the front of the open
list
• the list operates as a stack

• The search goes deeper into the space whenever

Ad
na

n
Sh

ah
za

da

• The search goes deeper into the space whenever
possible and backtracks only at dead ends

• Can be very fast, especially if there are many
solutions, but all quite deep in the space

• Uses a small amount of memory
• May fail to terminate even if a solution exists
• Not guaranteed to return the shortest path

13

Ad
na

n
Sh

ah
za

da

• Implementing depth first search is very easy in any modern
programming language:
• Evaluate the current state using a function
• Recursively call the evaluation function for each of the children

Ad
na

n
Sh

ah
za

da• Recursively call the evaluation function for each of the children
states

• The recursion mechanism takes care of all the necessary book-
keeping and allows the solution path to be generated as the
recursion unwinds

14

Ad
na

n
Sh

ah
za

da

• When we evaluate a state and derive its children,
we put these children at the back of the open list
• the list operates as a queue

• The search systematically goes across each level
• Always finds a solution if one exists

Ad
na

n
Sh

ah
za

da

• Always finds a solution if one exists
• Always finds the shortest path
• Can be very slow if the branching factor is high
• Can use a huge amount of memory (the open list

can get enormous)
• Requires a bit more work to implement 15

Ad
na

n
Sh

ah
za

da

• There are several possible refinements to straightforward
depth- and breadth- first searching:
• Hybrid breadth/depth using iterative deeping
• Mixed forward/backward chaining

Ad
na

n
Sh

ah
za

da• Mixed forward/backward chaining
• Heuristics

16

Ad
na

n
Sh

ah
za

da

• A way of carrying out a breadth-first search
without excessive memory needs and getting
some of the advantages of both methods

Ad
na

n
Sh

ah
za

dasome of the advantages of both methods
• Do a depth first search but limit the depth of the

search
• If no solution is found, repeat the depth first

search with an increased depth limit

17

Ad
na

n
Sh

ah
za

da

• If what we are interested in is finding the optimum path
between two (known) nodes, it may make sense to combine
forward and backward chaining
• i.e. expand both simultaneously and try to meet in the middle by

matching the open lists

Ad
na

n
Sh

ah
za

da

matching the open lists

• This is because the number of nodes expands exponentially

18

Ad
na

n
Sh

ah
za

da

• AI uses heuristics to address two main difficulties:
• A problem may be ambiguous, with no exact solution
• A problem may have an exact solution, but the computational

cost of finding it may be too large.
• This second problem is the subject of heuristic search

Ad
na

n
Sh

ah
za

da

19

Ad
na

n
Sh

ah
za

da

• Since computers are so powerful these days, can’t simple
breadth and depth first searches solve all our problems?
• even if not today, maybe tomorrow?

• Unfortunately many problems are of a complexity which • Unfortunately many problems are of a complexity which
we will never be able to solve by brute-force methods
• it is estimated that there are 10120 possible board positions in

chess (including symmetries)......this is more than the number of
molecules in the known universe!

20

Problems Which Grow Exponentially

• Many problems of considerable practical importance are of
exponential complexity
• the travelling salesman problem
• integer programming optimisation
• various graph colouring problems (e.g. the 3-colour problem)
• packing problems (i.e. given some finite storage spaces and some items,

what is the best way of packing the items in order to maximise capacity?)what is the best way of packing the items in order to maximise capacity?)

• These kinds of problems explode and cannot usually be solved by
brute force methods

21

• To tackle these kinds of problems, we need to find some way of
”steering” our search towards promising parts of the search space.

• We do this by computing a heuristic estimate of the promise of
states put on the open list.

• The list is held in a sorted form, so that the ”best” state is explanded
first
• hence the term ”best first” search

22

• The 8 puzzle is a reduced version of a fun children’s
puzzle.

• We have a 3 by 3 grid with 8 tiles numbered one to eight,
and one space.and one space.

• The object of the game is to move the tiles around until
you reach a ”winning formation”, i.e. the numbers in
order running clockwise around the puzzle.

• The optimum solution is the one which takes the
smallest number of moves. 23

Winning Formation of the 8-Puzzle

24

A Simple Heuristic for the 8-Puzzle

• A simple heuristic might be as follows:
• h1(n) = number of tiles out of place• h1(n) = number of tiles out of place

25

A Simple Heuristic for the 8-Puzzle

• A better heuristic might be:
• h2(n) = the total city-block distance of all tiles to their correct • h2(n) = the total city-block distance of all tiles to their correct

place

26

• No exact answer can be given
• heuristics are highly dependent on the problem and require some

skill to identify

• A trick is to consider a relaxed version of the problem (i.e. with • A trick is to consider a relaxed version of the problem (i.e. with
some constraints weakend or removed). Often an algorithm
which solves the relaxed version is a good (and admissible)
heuristic for the actual problem

27

• Heuristic search involves several trade-offs:
• space vs time
• cost of searching vs cost of calculating the heuristic

• a very complex heuristic might use more computational power than
it saves

• cost of accepting non-optimality vs additional development or • cost of accepting non-optimality vs additional development or
running costs to reach optimality

28

