
Adnan Shahzada

• Game playing is significantly harder than the kinds
of searching problems we have discussed up till
now

• We are faced with an opponent.
• We don’t know what they will do so there is an element

of uncertainty

• Games (especially chess) have been a great focus
for AI research.Why?
• Uncertainty makes them like the real world
• The rules can be well defined• The rules can be well defined
• The game position is easily represented
• There are no moral or ethical problems
• We can match computers against both other computers

and humans
• Playing games is seen as an ”intelligent activity”

• How do we think when we play chess?

• We consider making a move....
• if I move my queen there, then my opponents’ best move is to

move their knight there, etc. etc.move their knight there, etc. etc.

• We are making some assumptions:
• we want to make our best possible move
• our opponent is as skillful as we are
• our opponent has the same information as us
• our opponent will also do their best to win

• Consider two players of a game, MAX and MIN
• MAX moves first

• The game begins in an initial state

• There is a set of operators, i.e. legal moves

• Terminal states, where the game ends
• each terminal state has a utility function, i.e. a pay-off to each

player

• The Utility is assumed to be in relation to MAX
• we assume the Utility function(Evaluation function)

is symmetrical, i.e. what is good for MAX is equally
bad for MIN and vica-versabad for MIN and vica-versa

• Examples of utility
• chess might have a utility of 1 for a win, 0 for a draw

and -1 for a loss
• Zero sum games

• Assume that we can generate and search the entire decision
tree
• this is only possible for simple games, later we’ll think about more

complex games

How should MAX move?• How should MAX move?
• some lines end in wins for MAX, some in wins for MIN, but we

don’t know how MIN will move...

• What we do is first build the game tree

• Then we work in a bottom-up fashion, starting down at the
terminal states

• What we assume is as follows:• What we assume is as follows:
• When MAX is moving, MAX will chose the line with the highest

utility, so pass up the MAXimum utility to the next highest level
• When MIN is moving, MIN will chose the line with the lowest

utility (for MAX), so pass up the MINimum utility to the next
highest level

• When we reach the current position, MAX choses the line of
highest utitlity (as usual) and moves

• A simple game is the game of nim
• The rules of nim are as follows:

• we start with a number of sticks in a group
• on each move, a player must divide a group into two smaller • on each move, a player must divide a group into two smaller

groups
• groups of one or two sticks can’t be divided
• the last player who makes a legal move wins

6

1-5 3-32-4

MAX moves

MIN moves

1-1-4 1-2-3 2-2-2

1-1-1-3

1-1-1-1-2

1-1-2-2

MIN moves

MAX moves

MIN moves

red = win for MIN

green = win for MAX

6

1-5 3-32-4

MAX moves

MIN moves

green indicates
MAX can win!

1-1-4 1-2-3 2-2-2

1-1-1-3

1-1-1-1-2

1-1-2-2

MIN moves

MAX moves

MIN moves

red = win for MIN

green = win for MAX

• If the search tree is too large, we can’t go down to
the terminal states

• In this case we can search down only a certain
number of levels (this is called the PLY of the number of levels (this is called the PLY of the
search)

• At the maximum depth,we use a heuristic
evaluation function to rate the utility of the
different positions
• then use the MINIMAX as usual to decide what to do

Pratical Aspects of heuristic MINIMAX

• When we take each step, we will only need to calculate
the evaluation function for the next level, provided we
have stored the tree
• this will save time but costs space

• Usually we search the tree depth-first

• We need to trade off sophistication of heuristics vs cost
of searching

Ad
na

n
Sh

ah
za

da
Ad

na
n

Sh
ah

za
da

14

• When carrying out MINIMAX, we can save a lot of work
without loss of performance by pruning

• Remember we are searching the tree depth first:
• so in an instance where we have a simple discrete utility function,

as soon as we have found a way to force a win, we don’t need to
• so in an instance where we have a simple discrete utility function,

as soon as we have found a way to force a win, we don’t need to
look any longer

• this applies at all levels when MAX is to move - as soon as we find
a guaranteed winning line, we can prune other options

• similarly, when MIN moves, we can prune if we find a guaranteed
losing line (i.e.a win for MIN)

6

1-5 3-32-4

MAX moves

MIN moves

We have found a
certain win, so the other
branches are irrelevant

1-1-4 1-2-3 2-2-2

1-1-1-3

1-1-1-1-2

1-1-2-2

MIN moves

MAX moves

MIN moves

red = win for MIN

green = win for MAX

• We can generalise pruning for continuous utility
functions through a procedure known as -

• During the depth first search point we remember:
• the score for the best choice so far for MAX = 
• the score for the best choice so far for MIN = • the score for the best choice so far for MIN = 

• When evaluating moves for MAX, if we reach a point
in the tree where MIN can choose a move with
utility  , we can prune the move above
• MAX will not choose this move but prefer the chain to

where  was found (unless a better branch exists)
• similarly for MIN

3

3  2 2

MAX

3  2

83

2

2 ? 14?12 25

MIN

Ad
na

n
Sh

ah
za

da
Ad

na
n

Sh
ah

za
da

19

Ad
na

n
Sh

ah
za

da
Ad

na
n

Sh
ah

za
da

20

• Games of chance are even worse than games against an
opponent

• For example backgammon involves throwing two six-sided dice
at each move.
• the dice give an enoprmous branching factor, in addition to the

branching caused by the players having a choice of movebranching caused by the players having a choice of move
• the dice are not predictable in the way a rational opponent (MIN)

can be assumed to be

• How do we combine the assumed rationality of players with the
randomness of the dice within a MINIMAX framework?

• We build a tree which has chance nodes as well as rational
nodes

• We extend the MINIMAX algorithm to something called • We extend the MINIMAX algorithm to something called
EXPECTIMINIMAX

MAX rolls dice

MAX moves

MIN rolls dice

MIN moves

Complexity of EXPECTIMINIMAX

• EXPECTIMINIMAX is enormously computationally
expensive

• Can we reduce this by pruning?Can we reduce this by pruning?
• pruning branches with this randomness is going to be

harder...

 
• The first thing to note is that we can still perform the

usual alpha-beta procedure after we have calculated
EXPECTIMIN or EXPECTIMAX
• the search tree can be mapped onto an ordinary MINIMAX

procedure (although much more expensive)

• This helps, but we still have to calculate all possible
dice rolls
• why?
• we can’t prune an individual dice roll, even if it has a small

probability, because we don’t know what the utility of the
choices below it might be (it could be enormously high)

• We can get around this by imposing a ceiling and a
floor on utility

• Then we can can calculate a possible range for
EXPECTIMIN even before we have calculated all the
possible rollspossible rolls
• e.g. suppose we have just one die and utility must be

between 0 and 1
• suppose the first three options (1, 2, 3) all have utility 1, then

EXPECTIMIN must lie between 0,5 and 1
• if we have another branch with  = 0,4 we can prune the

current branch without further work.

• MAX is to move first
• MAX rolls the dice and we procede with a depth-

first search
• In the ordinary MINIMAX procedure, we would go

down to the ply of search and work back up as down to the ply of search and work back up as
follows:
• when MIN is to move, we pick the node with the

minimum evaluation function value
• when MAX is to move we pick the node with the

maximum evaluation function value

• For the lower levels there is an additional branch -
where the dice are rolled

• So when we calculate (for example) what would
be the best choice for MIN, we have to calculate
what would be MIN’s best choice for each
possible dice roll
what would be MIN’s best choice for each
possible dice roll

• We then combine these into an overall utility
called EXPEXCTIMIN (one for each of MIN’s
choices)
• MAX will then choose the maximum

• We have a similar EXPECTIMAX

• We can make use of the fact that we know the
probability of each possible dice roll

• So the expected utility (EXPECTIMIN) can be
calculated as follows:


nx

• prob(x) is the probability of roll x (there are n
possible rolls)

• MIN(x) is the value of the minimum utility choice
for MIN for the choices which follow roll x







nx

x

xMINxprobEXPECTIMIN
1

)()(

